首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   12篇
  国内免费   11篇
安全科学   38篇
废物处理   32篇
环保管理   205篇
综合类   121篇
基础理论   223篇
污染及防治   200篇
评价与监测   67篇
社会与环境   24篇
灾害及防治   7篇
  2023年   6篇
  2022年   6篇
  2021年   8篇
  2020年   17篇
  2019年   13篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   18篇
  2014年   29篇
  2013年   84篇
  2012年   34篇
  2011年   56篇
  2010年   29篇
  2009年   42篇
  2008年   43篇
  2007年   67篇
  2006年   35篇
  2005年   31篇
  2004年   28篇
  2003年   30篇
  2002年   32篇
  2001年   26篇
  2000年   15篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   7篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有917条查询结果,搜索用时 93 毫秒
71.
Many species that inhabit seasonally ponded wetlands also rely on surrounding upland habitats and nearby aquatic ecosystems for resources to support life stages and to maintain viable populations. Understanding biological connectivity among these habitats is critical to ensure that landscapes are protected at appropriate scales to conserve species and ecosystem function. Biological connectivity occurs across a range of spatial and temporal scales. For example, at annual time scales many organisms move between seasonal wetlands and adjacent terrestrial habitats as they undergo life‐stage transitions; at generational time scales, individuals may disperse among nearby wetlands; and at multigenerational scales, there can be gene flow across large portions of a species’ range. The scale of biological connectivity may also vary among species. Larger bodied or more vagile species can connect a matrix of seasonally ponded wetlands, streams, lakes, and surrounding terrestrial habitats on a seasonal or annual basis. Measuring biological connectivity at different spatial and temporal scales remains a challenge. Here we review environmental and biological factors that drive biological connectivity, discuss implications of biological connectivity for animal populations and ecosystem processes, and provide examples illustrating the range of spatial and temporal scales across which biological connectivity occurs in seasonal wetlands.  相似文献   
72.
Disasters evolving from hazards are a persistent and deadly occurrence in the United States. Despite this, hazard alerts have remained spatially vague, temporally imprecise, and lack actionable information. These deficiencies indicate a divide between the status quo and what is possible given modern environmental models, geographic information systems (GIS), and smartphone capabilities. This work describes an alternative, prototype system, “FloodHippo,” which integrates operational model outputs, cloud‐based GIS, and expanded communication channels to provide personal and interactive disaster alerts for floods. The precepts and methods underpinning FloodHippo apply equally to other disasters that evolve over space and time, presenting the opportunity for a more intelligent disaster response system. The development of such a system would not only minimize current shortcomings in disaster alerts but also improve resilience through individual action, along with community, academic, and federal cooperation.  相似文献   
73.
74.
Six diel TCO2 cycles determined by infrared (IR) photometry from five drift stations occupied between 24 February and 16 March 1979 in the mixed layer of the northwestern Caribbean Sea are examined. Comparison of TCO2 variation with coincident salinity and O2 variation demonstrated that TCO2 often co-varied with these independently measured variables. During five diel cycles TCO2 variation was characterized by nocturnal production and diurnal consumption. The inverse, diurnal production of CO2, occurred downstream from Misteriosa Bank, whose corals apparently contributed to a water mass having a twofold increase of POC and a sixfold larger population of heterotrophic nanoplankters. For the five diel studies carried out in waters with balanced or nearly blanced heterotrophic and phototrophic components of the nanoplankton, CO2 consumption at constant salinity always occurred between 06.00 and 09.00 hrs. Net uptake often continued through 15.00 hrs, but not always in the absence of significant salinity changes. At constant salinity net O2 evolution never exceeded 0.5 mol l-1 h-1 while net CO2 uptake consistently averaged 3 mol l-1 h-1 for an apparent net production of 36 mg C m-3 h-1, which greatly exceeds the O2 changes and open ocean 14C estimates from the literature. Diurnal consumption was apparently balanced by nocturnal production of CO2 so that no significant net daily change in TCO2 was observed. Departures from theoretical PQ and RQ and the possibility of nocturnal variations in formaldehyde and carbonate alkalinity imply that chemotrophs, both methane producers and methane oxidizers, play a significant role in CO2 cycling. This could be through the metabolism of the nonconservative gases CH4, CO, and H2, and a link between chemotrophy and phototrophy through these gases is hypothesized. These open system measurements were subject to diffusion and documentable patchiness, but temporal TCO2 changes appear to indicate the net direction of microbiological activity and join a growing body of literature showing dynamic variation in CO2 and O2 that exceeds estimates by 14C bottle assays of carbon fixation.  相似文献   
75.
76.
ABSTRACT: Examples are drawn from the Indus Basin to explain why on-farm water management problems restrict the output of agricultural products in many LDC's. Data is presented to illustrate the low level of water management knowledge of both the farmers and the current extension agents. Examples of the level of corruption and its effect on the operating system are illustrated. Several requirements that must be met before a large-scale irrigation scheme will actually increase the welfare of LDC's farmers are presented.  相似文献   
77.
78.
Estimates of animal methane emissions   总被引:2,自引:0,他引:2  
The enteric methane emissions into the atmospheric annually from domestic animals total about 77 Tg. Another 10 to 14 Tg are likely released from animal manure disposal systems. About 95% of global animal enteric methane is from ruminants, a consequence of their large populations, body size and appetites combined with the extensive degree of anaerobic microbial fermentation occurring in their gut. Accurate methane estimates are particularly sensitive to cattle and buffalo census numbers and estimated diet consumption. Since consumption is largely unknown and must be predicted, accuracy is limited often by the information required, i.e., distribution of animals by class, weight and productivity. Fraction of the diet lost as enteric methane mostly falls into the range of 5.5–6.5% of gross energy intake for the world's cattle, sheep and goats. Manure methane emissions are heavily influenced by fraction of disposal by anaerobic lagoon. Non-ruminants, i.e., swine, become major contributors to these emissions.  相似文献   
79.
Darwin's Fox: A Distinct Endangered Species in a Vanishing Habitat   总被引:2,自引:0,他引:2  
The temperate rain forest of Chiloé Island, Chile, is inhabited by an endemic fox ( Dusicyon fulvipes ) first described by Charles Darwin and now designated Darwin's fox. Despite morphological differences, Darwin's fox has been considered only an insular subspecies of the mainland chilla fox ( D. griseus ). This follows the assumption that the island population, with an estimated population of less than 500, has been separated from the mainland chilla fox for only about 15,000 years and may have received occasional immigrants from the mainland. Consequently, this island population has not been protected as endangered or bred in captivity. Recently, a population of Darwin's fox was discovered on the Chilean mainland 600 km north of Chiloé Island. This population exists in sympatry with chilla and possibly culpeo ( D. culpaeus ) foxes, which suggests that Darwin's fox may be reproductively isolated. To clarify the phylogenetic position of Darwin's fox, we analyzed 344 bp of mitochondrial DNA control-region sequence of the three species of Chilean foxes. Darwin's foxes from the island and mainland populations compose a monophyletic group distinct from the two other Chilean fox species. This indicates that Darwin's fox was probably an early inhabitant of central Chile, and that its present distribution on the mainland may be a relict of a once much wider distribution. Our results highlight the ability of molecular genetic techniques to uncover historical relationships masked by recent events, such as local extinctions. The "rediscovery" of Darwin's fox as a distinct species implies that greater significance should be given to the protection of this species and its unique habitat and to documenting the extent of its mainland distribution.  相似文献   
80.
The Las Vegas Wash is an excavated waterway channel which drains all surface water and effluent discharge from sewage-treatment facilitates from the greater Las Vegas Metropolitan Area to Lake Mead. Fine and course sediment samples were collected at 100-m intervals and analyzed to determine the distribution of gamma-emitting radionuclides in the lower 5,500 m of the Las Vegas Wash. Results indicate depletion of long-lived fission products in upstream Wash sediments. However, trace levels of 137Cs measured in downstream sediments suggest the resuspension and transport of radioactive fallout within the Wash. Levels of 40K, 232Th, 235U, and 238U found in Wash sediments were consistent with levels typically found in southeast Nevada soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号